
International Journal of Theoretical Physics, Vol. 37, No. 9, 1998

Time Machines and the Breakdown of Unitarity

Frank Antonsen1 and Karsten Bormann1

Received October 13, 1997

We present a generic way of thinking about time machines from the view of a
faraway observer. In this model the universe consists of three (or more) regions:
One containing the entrance of the time machine, another the exit, and the
remaining one(s) the rest of the universe. In the latter we know ordinary quantum
mechanics to be valid and thus are able to write down a Hamiltonian describing this
generic time machine. We prove that the time evolution operator is nonsymmetric.
Various interpretations of this irreversibility are given.

1. INTRODUCTION

The question of whether time machines are possible has been studied

by several authors in recent years. The interest was spawned by the realization

that topologically nontrivial space-times may exhibit closed timelike curves,

or ª time machines.º The most important example is an otherwise flat space-

time with a sufficiently short wormhole connecting two distant regions; see

Fig. 1. This can be made to function as a time machine either by putting the

two mouths of the wormhole in regions of different gravitational potential

or by accelerating one with respect to the other and then bringing it to rest;

both methods generate a time shift experienced by an object traveling through

the wormhole (Morris et al., 1988; Kim and Thorne, 1991; Friedman et al.,

1990; Novikov, 1992).

The presence of closed timelike curves (time machines) would make

the past and the future fuse in the sense that `someone’ traveling on a closed

timelike curve could influence his own past (the past and future light cones

overlap). So time machines make distinguishing past and future impossible,

right? Wrong! The Hamiltonian describing the action of the time machine
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Fig. 1.

becomes nonsymmetric making the evolution operator nonunitary, and thus

time machines will be time-asymmetric in a quantum mechanical context.

We can model such time machines very easily. First assume a 3 1 1
splitting of spacetime, i.e., the existence of a cosmic time (if the time machine

is constructed from a wormhole, then this splitting will only be possible

sufficiently far away from the mouths). Space will be divided into a number

of regions. The time machine has its entrance (deep) inside region 1, its exit

(deep) within region 2, (see Fig. 2), and it operates in the following way:

any object entering a particular region, region 1, at time t, reappears in another
region, region 2, with a probability a , but at time t 2 T, i.e., it has moved

backward in time. Similarly, an object entering region 2 at a time t will

reappear in region 1 at time t 1 T with a probability b , i.e., it has moved

forward in time. This is the essence of what a time machine does, and is the

only effect we are going to study in this paper. These two regions, 1 and 2,

could contain the mouths of a wormhole, and we will often refer to them as
the ª mouthsº of the time machine. No assumption is made concerning the

actual structure of the time machine; it could be a wormhole or it could be

something else.

Fig. 2.
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The objects will be taken to be the quanta of some scalar field (one

could with very little extra troubleÐ or gainÐ treat quanta of arbitrary spin,

too). It will be shown that the number of particles entering the wormhole is
different from the number coming out at the other end, which is most unfortu-

nate. Thus time machines make it possible to distinguish past and future, for

instance, by looking at the density of some Bose field initially distributed

homogeneously in space. They also pose a threat to energy conservation. Of

course one could put this difference in particles/energy into the time machine’ s

internal structure in order to have energy conservationÐ getting the extra
particles out/in would thus be classifiable as part of the maintenance costs,

but to an external observer a neglected time machine looks like an energy

source/drain. If they are homogeneously distributed, this observation makes

the existence of wormholes (or any other structure capable of supporting a

time machine) with sizes in the interval between , 10 2 18 m and , 108 m

highly unlikelyÐ they would have been observed. It also makes it dubious
whether a ª time machineº would really be up to its name, i.e., whether a space-

time possessing closed timelike curves would function as a time machine in

the traditional sense of the word.

2. BREAKDOWN OF UNITARITY IN THE PRESENCE OF
TIME MACHINES

We consider a partition of space, and we label each of these regions

such that region 1 is one of the ª mouthsº and region 2 the other. We assume

thart particles entering region 1 will reappear, with some probability, in region

2, but at an earlier time and vice versa. Since the ª mouthsº are assumed to
lie deep within the appropriate regions, these probabilities a , b will typically

not be one, i.e., a , b , 1. The time step will be assumed identical in both

directions and will be denoted by T. This is not a severe assumption: if the

time steps were different in the two directions, nonunitarity would be obvious.

The Hamiltonian will be taken to be the simplest possible, namely a slight

generalization of the canonical Hamiltonian of a free field in number
representation:

H 5 a a
²
1(t 1 T )a2(t) 1 b a

²
2(t 2 T )a1(t) 1 g o

N

i 5 1

a
²
i (t)ai(t) (1)

with i labeling the various regions, i 5 1, 2, . . . , N, where N could be infinite

(it has to be at least three: the two ª mouthsº and the rest of the universe).
Here the g term simply counts the number of quanta in the various regions

at time t, whereas the a , b terms describe the actual time machine effect.

Had i been the momentum and had t instead referred to a particular site

in a chain, then this would be a familiar HamiltonianÐ the first two terms
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would be ª hopping termsº describing the possibility of a quantum to jump

from one site to another.

We consider the regions 1 and 2 as identified modulo a time shift, which
implies the following commutator relations (assuming bosonic statistics):

[ai(t), a
²
j (t8)] 5 d ij D (t 2 t8) 1 d i1 d j2 D (t8 2 t 1 T ) 1 d i2 d j1 D (t8 2 t 2 T ),

i, j 5 1, 2, . . . , N (2)

The remaining commutators all vanish.2 The function D is a (possibly)

smeared Dirac delta distribution, the smearing mimicking some uncertainty
in the values of t, t8. Its precise form matters little for our calculation; it

could just as well be a proper Dirac delta distribution. Our lack of knowledge

about the precise structure of the time machine can be parametrized by this

function D (t) and the coefficients a , b appearing in the Hamiltonian. So the

second quantization operators corresponding to different regions at different

time commute, except for those corresponding to the ª mouths.º
The time evolution operator U(t, t8) is given by U(t, t8) 5 U(t 2 t8) 5

exp( 2 iH(t 2 t8) and hence we need to evaluate powers of H. We want to

find the matrix elements of U(t, t8). Denoting the states by ) n, t & , with n 5
(n1, n2, . . . , nN ) a multi-index describing the number of quanta in each region,

we have

^ n, t ) H ) n8, t8 & 5 a d n8
2 ,n2 2 1 d n8

1 ,n1 1 1 D (t8 2 t 2 T ) ! n2(n1 1 1) &
i Þ 1,2

d n8
i ,ni

1 b d n8
2 ,n2 1 1 d n8

1 ,n1 2 1 D (t8 2 t 1 T ) ! n1n2 &
i Þ 1,2

d n8
i ,ni

1 g D (t 2 t8) d (n, n8) o
i

ni (3)

where d (n, n8) [ P i d ni,n
8
i is a Kronecker delta.

Similarly, we get

^ n, t ) H 2 ) n8, t8 &

5 a 2 d n8
1 ,n1 2 2 d n8

2 ,n2 1 2 ! (n1 2 2)(n1 2 3)(n2 1 2) D (t8 2 t 1 T ) d 12(n, n8)

1 a 2 d n8
1 ,n1 2 1 d n8

2 ,n2 1 1 ! (n1 2 1)(n2 1 1) D (t8 2 t 1 T ) d 12(n, n8)

1 b 2 d n8
1 ,n1 1 2 d n8

2 ,n2 2 2 ! (n1 1 3)(n1 1 4)n2(n2 2 1) D (t8 2 t 2 T ) d 12(n, n8)

2 Thus the time machine gives rise to two modifications: (1) the presence of the a , b terms in
the Hamiltonian and (2) the D (t8 2 t 6 T ) terms in the commutator relations. These two
modifications are of course not independent: putting either a or b equal to zero amounts to
forbidding travel through the wormhole in the corresponding direction, and hence the analogous
term in the commutator relations should also be removed. To avoid a too heavy notation, we
have decided, however, not to let this appear explicitly in equations (1) and (2).
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1 b 2 d n8
1 ,n1 1 1 d n8

2 ,n2 2 1 ! (n1 2 1)(n2 1 1) D (t8 2 t 2 T ) d 12(n, n8)

1 g2 d (n, n8) D (t 2 t8) o
i Þ j

ninj 1 g2 d (n, n8) D (t 2 t8) o
i

ni(ni 1 1)

1 a b (n2(n1 1 1) 1 n1n2) d 12(n, n8) d ( ) t 2 t8 ) 2 T )

1 a g d 12(n, n8) o
i

ni( d n8
1 ,n1 2 1 d n8

2 ,n2 1 1 D (t8 2 t 1 T ) ! (n1 2 1)(n2 1 1) 1 1)

1 b g o
i

ni( d n8
1 ,n1 1 1 d n8

2 ,n2 2 1 D (t8 2 t 2 T ) ! (n2 2 1)(n1 1 1) 1 1) (4)

with d 12(n, n8) [ P i Þ 1,2 d n8
i ,ni

. The time asymmetry of the Hamiltonian thus

manifests itself in the evolution operator. This will be seen even more clearly

in the next-order contribution.
A convenient way of representing the various contributions is in terms

of diagrams as follows: the two regions 1 and 2 are represented by two dots;

the remaining N 2 2 regions need not be drawn, as they are not influenced

by the time machine. The particle motion is then indicated by arrows; the g
terms count the number of particles and are essentially vacuum terms, and

are represented by closed loops. This gives the diagrams listed in Table I.
We refer to these as ª worn tracksº (again thinking of the time machine as

being made from a wormhole). Table II shows the various contributions to

H 3 (here t 6 [ t 6 T ). We see that we generate asymmetries even in these

Table I. The Wormtracks Corresponding to the Various Contributions to H and H 2

Power

of H Term Wormtracksa

H a
b
g

H 2 a 2

b 2

g2

a b

a g

b g

a The filled circles represent the regions 2 and 2, respectively, while open circles represent the

number operator, and arrows the motion of a particle as described in the text.
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Table II. The Contributions to H 3 a

Term Contribution to H 3

a 3 a
²
1(t+)a

²
1(t+)a

²
1(t+)a2a2a2 1 3a

²
1(t+)a

²
1(t+)a2a2 1 a

²
1(t+)a2

b 3 a1a1a1a
²
2(t 2 )a

²
2(t 2 )a

²
2(t 2 ) 2 6a1a1a

²
2(t 2 )a

²
2(t 2 ) 1 7a1a

²
2(t 2 )

g3 ( ijk a
²
i a

²
j a

²
kaiajak 1 3 ( i,j a

²
i a

²
j aiaj 1 ( i ni

a 2 b 3a
²
1(t+)a

²
1(t+)a2a2a1a

²
2(t2 ) 2 3a

²
1(t+)a

²
1(t+)a2a2 1 a

²
1(t+)a2a1a

²
2(t 2 ) 2 a

²
1(t+)a2

a b 2 3a
²
1(t+)a2a1a1a

²
2(t 2 )a

²
2(t 2 ) 2 9a

²
1(t+)a2a1a

²
2(t 2 ) 1 3a

²
1(t+)a2

a 2g 3 ( j a
²
1(t+)a

²
1(t+)a

²
j a2a2aj 1 3a

²
1(t+)a

²
1(t+)a2a2 1 2 ( j a

²
1(t+)a

²
j aja2

1 3a
²
1(t+)a

²
2a2a2 1 a

²
1(t+)a2 1 n2

a g2 3 ( jk a
²
1(t+)a

²
j a

²
ka2ak 1 6 ( j a

²
1(t+)a

²
j a2aj 1 a

²
1(t+)a2 1 3 ( j a

²
2a

²
j aja2 1 2n2

a b g 8 ( j a
²
1(t+)a

²
j a2a1aja

²
2(t 2 ) 2 9a

²
1(t+)a2 2 2a

²
2a1 2 n2 2 9a

²
1(t+)a2a1a

²
2(t 2 )

2 3a
²
1(t+)a

²
1a2a2 1 a

²
2a2a2a

²
2(t 2 ) 2 ( j a

²
1(t+)a

²
j aja1 1 2a

²
2a2a1a

²
2(t 2 ) 2 ( j a

²
1a

²
j aja2

b 2g 3 ( j a
²
j a1aja1a

²
2(t 2 )a

²
2(t 2 ) 2 2a

²
1a1a2a

²
2(t 2 ) 2 9 ( j a

²
j aiaja

²
2(t 2 )

1 3aaa1a
²
2(t 2 )a

²
2(t 2 ) 2 10a1a

²
2(t 2 ) 1 4n1 1 3 ( j nj 1 3

b g2 2 ( jk a
²
j a

²
ka1ajaka

²
2(t 2 ) 2 2 ( j a

²
j a

²
1a1aj 1 5 ( j a

²
j a1aja

²
2(t 2 )

2 ( jk a
²
j a

²
kajak 2 4 ( j nj 2 3n1 1 a1a

²
2(t 2 ) 2 1

a Only shifted times, t 6 5 t 6 T, are written explicitly. Some of these terms will have vanishing

matrix elements.

low-order terms. The work tracks and the weights with which they appear
are listed in Table III.

The Hamiltonian itself is of course not a symmetric operator, as it

identifies two different regions provided there is specific difference between

the times, but when calculating the higher powers of H we discover new

asymmetries, which were not to be expected a priori. This is so even in the

most symmetric case b 5 a ; in fact the result is quite independent of the
precise values of the parameters a , b , g.

It follows from equations (3) and (4) and Tables II and III that more

quanta are exiting the time machine than there are entering it. The nonsymmet-

ric nature of the Hamiltonian thus generates, through the time evolution

operator, a surprisingly strong irreversibility.

2.1. Generation of Entropy

Nonsymmetric time evolution is usually taken to be a sign of irreversibil-

ity and hence of entropy generation. We want to show that this is certainly

so in our case, at least to the very lowest order.

Given a density matrix r , the entropy is

S 5 2 Tr r ln r (5)

In our case r is (up to a normalization constant) just the time evolution

operator U(t, t8). Thus we can use our expressions for the matrix elements
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Table III. The Wormtracks Corresponding to the Various Contributions to H 3 a

Term Wormtracks and their weights

a 3

b 3

g3

a 2 b
a b 2

a 2g

a b g

b 2g

b g2

a Only operator products which involve either region 1 or 2 or both (and hence not terms such

as, say, a
²
3 a4) are shown. Note the asymmetry.
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of the Hamiltonian found above. First we notice that the terms only involving

the g contributions correspond to a free-field configuration and consequently

have vanishing entropy change (if all the contributions are added together).
We only need to concentrate on the contributions involving the a , b part.

This is also what one would expect, as these are precisely the time-machine-

specific parts of the Hamiltonian. Furthermore , since a trace is involved in

the definition of S, we only need to keep the diagonal parts of ^ n, t ) H k ) n8,
t8 & . Since r ln r , UH, the first such contribution comes from the matrix

elements of H 2. Thus

Tr UH 5 g D (t 2 t8) o
n

n 2 (t 2 t8) 1 g2 D (t 2 t8) o
ni ,nj

ni nj

1 a b D ( ) t 2 t8 ) 2 T ) o
n1 ,n2

(n2(n1 1 1) 1 n1n2) 1 ? ? ? 2 (6)

The only surviving term is seen to be (as mentioned above, the g terms will

vanish when one takes all powers into account)

(t 2 t8) a b D ( ) t 2 t8 ) 2 T ) o
n1 ,n2

(n2(n1 1 1) 1 n1n2) (7)

Now, this sum is divergent and needs to be regularized. The obvious regular-

ization scheme to choose is z -function regularization (Hawking, 1977;

Ramond, 1989). One replaces sums like

o
n

n 2 s

by a Riemann z -function z (s). This can be analytically continued to values

of s where the above, unregularized summation is ill defined.

In our case we need

1 o n n 2 reg

5 z ( 2 1) 5 2
1

12
(8)

and similarly

1 o n (n 1 1) 2 s 2 reg

5 z (s, 1) (9)

where z (s, a) is the so-called Hurwitz z -function. We only need to know the

value at a 5 1, s 5 2 1, corresponding to a regularized value for ( n1 (n1 1
1) : 5 z ( 2 1, 1) 5 2 1/12. Hence the regularized contribution to the

entropy reads
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(t 2 t8) a b D ( ) t 2 t8 ) 2 T ) o
n1 ,n2

(n2(n1 1 1) 1 n1n2)

: 5
1

72
(t 2 t8) a b D ( ) t 2 t8 ) 2 T ) (10)

Whenever a b . 0 this is positive, and hence we have created entropy.

Hence, time machines can generate entropy and will consequently gener-

ate an arrow of time, contrary to what one would expect.

3. TIME EVOLUTION OF OPERATORS AND GENERALIZED
BOGULYUBOV TRANSFORMATIONS

From the commutator relations it is straightforward to derive the equa-

tions of motion for the operators a1, a
²
1, a2, a

²
2. These turn out to be

iaÇ 1(t) 5 2 ( b 1 g)a1(t) (11)

iaÇ
²
1(t) 5 b a

²
2(t 2 T ) 1 ga

²
1(t) (12)

iaÇ 2(t) 5 2 ( a 1 g)a2(t) (13)

iaÇ
²
2 5 a a

²
1(t 1 T ) 1 ga

²
2(t) (14)

in which the asymmetry is also apparent. We can diagonalize these by means

of a generalized Bogulyubov transformation. Write

g
²
1(t) 5 U11(t)a

²
1(t) 1 U12(t)a

²
2(t 2 T ) (15)

b
²
2(t) 5 U21(t)a

²
1(t 1 T ) 1 U22(t)a

²
2(t) (16)

while the annihilation operators are not transformed. The transformation
matrix U(t) then has to satisfy

i
d

dt 1 U11

U12 2 5 1 v 1 2 g 2 a
2 b v 1 2 g 2 1 U11

U12 2 (17)

i
d

dt 1 U21

U22 2 5 1 v 2 2 g 2 a
2 b v 2 2 g 2 1 U21

U22 2 (18)

where v 1, v 2 are the energies. Solving these equations is an easy matter (the

coefficients v 1, v 2, a , b , g are all constants). The new operators then satisfy

bÇ
²
i 5 2 i v ib

²
i , i 5 1, 2.

Thus, considering the four operators ai , a
²
i as independent, we can make

a transformation into ª normal modesº b
²
i , ai, the energies of which are v 1,

v 2, 2 ( a 1 g), 2 ( b 1 g). This means that we can transform the Hamiltonian

into a diagonal form, using a kind of generalized normal modes, but these
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modes will manifestly break hermiticity, as then (ai)
² 5 a

²
i Þ b

²
i Ð the quanta

annihilated by ai are not the same as those created by b
²
i . This is also seen

in the fact that the ª energiesº of the operators b
²
i (i.e., v 1, v 2) need not be

identical to that of the ai [i.e., 2 ( a 1 g), 2 ( b 1 g)]. Since ª switching offº

the time machine forces (ai)
² 5 b

²
i and the energies to be identical, the time

machine is then seen as a mechanism that forces b
²
i away from (ai)

² for i 5
1, 2 [or equivalently as driving v i away from 2 ( a 1 g), 2 ( b 1 g)], thereby

generating nonunitarity of the time evolution operator. We note that in this

ª diagonalizedº representation of the Hamiltonian, the explicit reference to
the time shift T has disappeared; it will only enter if one transforms back to

the original basis.

4. CONCLUSION

We assumed the existence of some kind of cosmic time (the 3 1 1
splitting) at least sufficiently far away from regions 1 and 2. But this cosmic

time will a priori not have a particular directionÐ both the laws of relativity

and of quantum mechanics are invariant under time reflections. It is therefore

rather surprising that the presence of time machines, which are generally taken

as destroying causality, creates an irreversibility and thus, to be consistent with

the second law of thermodynamics, imposes an arrow of time.
However, this is not the only physical effect of such time machines.

Other basic issues in physics are influenced in addition to problems with

causality. Notably, in quantum field theory unitarity is broken (this is actually

due to the breakdown of causality) and renormalization theory will need a

modification due to the emergence of topologically inequivalent loop dia-
grams, some of which it is not a priori possible to eliminate as they stem

from the breakdown of causality.

There is also a problem with the conservation of energy. Since more

quanta are leaving than entering the time machine regions, energy has to

supplied in order to have energy conservation. This need to constantly supply

energy will, quite irrespective of the problems of actually keeping energy
from traversing the time machine, exacerbate the maintenance cost, making

it even more unstable than previously thought (Antonsen and Bormann, 1995,

1996). We emphasize that these conclusions are quite generic, as any time

machine will, from a bird’ s-eye view, behave like the model presented here.
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